Return and risk Lecture 1

Dr. Martin Ewers

April 23, 2014

<ロ > < 回 > < 画 > < 画 > < 画 > < 画 > < 画 > < 画 > < 1/31

Notation

Table of contents

- 1. Notation
- 2. Defining return
- 3. Past return
- 3.1 Development of returns and share prices over time
- 3.2 Frequency distribution
- 3.3 Measuring past performance
- 4. Future return
- 4.1 Randomness
- 4.2 Expected value
- 4.3 Variance
- 4.4 Probability distribution

Section 1

Notation

<ロ> < 部> < 言> < 言> < 言> のへ() 3/31 Rreturn (a random variable) r_i realization of R if R is a discrete variablerrealization of R if R is a continuous variable $E[R] = \mu_R$ expected value of R $VAR[R] = \sigma_R^2$ variance of R σ_R standard deviation of R

<ロ > < 回 > < 三 > < 三 > < 三 > 三 の Q (~ 4/31

Section 2

Defining return

Defining return

Definition (Return)

Return is the growth rate of the investor's fortune.

Defining return

Time as discrete variable	Time as a continuous variable
$V_t = V_{t-1} \cdot (1+r_t)$	$V(t) = V(t-1) \cdot \exp(r)$ $\exp(r) = \lim_{n \to \infty} \left(1 + \frac{r}{n}\right)^n$
$r_t = \frac{V_t}{V_{t-1}} - 1$	$r = \ln \left(V(t) \right) - \ln \left(V(t-1) \right)$

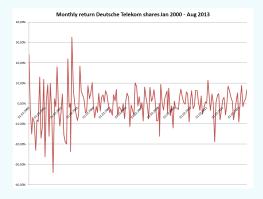
<ロト < 部ト < 言ト < 言ト 言 の Q (や 7/31

Section 3

Past return

Past return

Development of returns and share prices over time



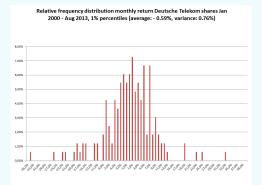
<ロト < 回ト < 巨ト < 巨ト < 巨ト 三 の Q (C 9/31

Past return

Development of returns and share prices over time

<ロ> < 部 > < E > < E > E のQC 10/31

Notation	Defining return	Past return	Future return
Past return			
Frequency distribu	ıtion		



<ロト < 回 ト < 三 ト < 三 ト < 三 ト 三 の へ () 11/31

Notation	Defining return	Past return	Future return
Past returr			
Measuring past	performance		

Measuring past performance

- Measure by geometric return
- Average return is misleading

Example

Sequence of returns: +50%, +30%, -100%

Notation	Defining return	Past return	Future return
Past return			

Definition (geometric average)

$$\left(\prod_{t=1}^{n} \left(1+r_{t}\right)\right)^{\frac{1}{n}} - 1 = \sqrt[n]{\prod_{t=1}^{n} \left(1+r_{t}\right)} - 1$$

In a limited liability economy return cannot be less than -100%.

Section 4

Future return

<ロ > < 回 > < 巨 > < 巨 > < 巨 > 三 の Q (~ 14/31

Notation	Defining return	Past return	Future return
Future return			
Randomness			

Thesis

The future return R is a random variable.

Notation	n	Defining return	Past return Fu	uture return
	omness			
	Randomness		Unpredictability	
	No objective rea		Determinism. Cause and effect simply to complex to be understood.	t

Notati	ion	Defining return	Past return	Future return
	ture return ^{domness}			
	Definition (ran	dom variable	<i>R</i>)	

With return as a continuous variable:

With return as a discrete variable:

$$\begin{array}{rcl} R: & \Omega & \to & \{r_0, r_1, \dots, r_n\} \\ & \omega & \mapsto & R(\omega) \end{array}$$

The sample space Ω is a set of outcomes ω .

Notation	Defining return	Past return	Future return
Future retur	n		
Randomness			

Examples for discrete sample spaces		
Random experiment	Sample space	
'weather'	$\Omega = \{ {\sf sunshine, rain} \}$	
'business cycle'	$\Omega = \{ { ext{expansion, boom, recession, depression} } \}$	
'stability of currency'	$\Omega = \{$ currency persists, currency reform $\}$	
'play dice'	$\Omega = \{1,2,3,4,5,6\}$	

・ロト ・日 ・ ・ ヨ ・ ・ 日 ・ うへで

Notation	Defining return	Past return	Future return
Future retur	n		
Randomness			

Example (Random variable)

$$R(\omega) = \left\{egin{array}{ccc} 10\% & ext{if} & \omega = ext{`sunshine} \ -5\% & ext{if} & \omega = ext{`rain'} \end{array}
ight.$$

Notation	Defining return	Past return	Future return
Future retur	n		
Expected value			

Definition (expected value of return)

with discrete sample space:

$$\mathsf{E}[R] = \sum_{\omega \in \Omega} \mathsf{p}(\omega) \cdot \mathsf{R}(\omega)$$

Notation	Defining return	Past return	Future return
Future return			
Expected value			

Definition (expected value of return)

with return as a discrete variable:

$$\mathsf{E}[R] = \sum_{i=0}^{n} p(R = r_i) \cdot r_i$$

with return as a continuous variable (f is a probability density function):

$$\mathsf{E}[R] = \int_{-\infty}^{+\infty} f(r) \cdot r \, dr$$

Notation	Defining return	Past return	Future return
Future retur	n		
Variance			

Thesis

The variance VAR of the return R is a measure of the risk attached to an individual asset.

Notation	Defining return	Past return	Future return
Future return			
Variance			

Definition (variance)

with return as a discrete variable:

$$VAR(R) = E[R] [(R - \mu_R)^2]$$
$$= \sum_{i=1}^n p(R = r_i) \cdot (\mu_R - r_i)^2$$

◆□ > ◆□ > ◆三 > ◆三 > ◆□ > ◆○ >

23/31

Remember notation: $E(R) = \mu_R$

Notation	Defining return	Past return	Future return
-			
Future return	n		
Variance			

Definition (variance)

with continuous sample space (f is the probability density function):

$$\begin{aligned} \mathsf{AR}[R] &= \mathsf{E}\left[(R-\mu_R)^2\right] \\ &= \int_{-\infty}^{+\infty} f(r) \cdot (r-\mu_R)^2 \, dr \end{aligned}$$

<ロト < 回 > < 巨 > < 巨 > < 巨 > < 巨 > < 三 > < 三 > < 24/31

Definition (Probability density function)

P is a measure for probability. The return R is supposed to be a continuous random variable taking real numbers.

A function $f:\mathbb{R} \to [0,\infty[$ is called probability density function of R if

$$P(r_0 \leq R \leq r_1) = \int_{r_0}^{r_1} f(r) \,\mathrm{d}r$$

25/31

for all real numbers $r_0 < r_1$.

In a limited liability economy, R cannot be less than -100%.

The domain of the probability density function of R is $[-1,\infty[:$

$$f:[-1,\infty[\,\rightarrow [0,\infty[$$

It is certain that the random return will take some value between -100% and infinity:

$$\int_{-1}^{\infty} f(r) \, \mathrm{d}r = 1$$

Notation	Defining return	Past return	Future return
Future return Probability density			

Normal distribution of returns

Returns are often assumed to be normally distributed.

Advantage: The normal distribution $\mathcal{N}(\mu_R, \sigma_R^2)$ is described by just two parameters (namely μ_R and σ_R^2)).

Notation	Defining return	Past return	Future return
_			
Future retui	'n		
Probability density	1		
	Ý		

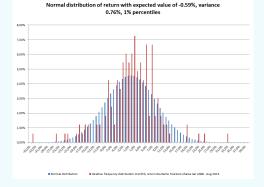
Normal distribution of returns

Problem:

- The domain of a normally distributed variable is ℝ
 (f: ℝ → [0,∞[).
- ▶ But in a limited liability economy, R cannot be less than -100%, i.e. the domain of the probability density function of R should be [-1,∞[.

Notation	Defining return	Past return	Future return
Future return			
i dedi e i eediiii			
Probability density			

μ_R and σ_R^2 estimated on the basis of past frequency distributions.



<ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 29 / 31

Notation	Defining return	Past return	Future return
F			
Future return			
Probability density			

Log-normal distribution of share prices

Assumptions:

- ► The future return *R* is a continuous random variable.
- The current share price $V_0 = 1$ is a fixed, observed value.
- The future share price V_1 is a random variable.
- $V_1 = V_0 \cdot \exp(r)$ applies.
- ► *R* is normally distributed.

Conclusion:

 V_1 is log-normally distributed.

Notation	Defining return	Past return	Future return
Future returr	r		
	1		
Probability density			

